Location-Based Audio Recording with FLAC
and JSON Format

Ole Aamot

Aamot Innovation

February 2025

Abstract

This thesis explores Location-Based Multiple-Location Audio Recording (MLAR) with
Free Lossless Audio Codec (FLAC) and JavaScript Object Notation (JSON) format,
focusing on methodologies for geospatial audio mapping, metadata structuring, and im-
plementation on GarageJam MLAR. The research investigates efficient encoding, privacy
implications, and potential applications for free speech, cultural preservation, and jour-

nalism.

https://www.garagejam.org/mlar/

Contents

Chapter 1

Introduction

Location-Based Multiple-Location Audio Recording (MLAR) is an innovative approach
that combines geospatial data with high-fidelity audio recording. With the increasing
importance of preserving auditory experiences in various environments, MLAR enables
precise documentation of soundscapes across multiple locations. The integration of FLAC
for lossless audio compression and JSON for structured metadata facilitates efficient stor-
age and retrieval of audio recordings with location-specific attributes.

This chapter introduces the motivation behind MLAR, outlines its significance in the
domains of digital archiving, journalism, and cultural heritage preservation, and provides
an overview of the core technologies employed. Additionally, the challenges related to data
management, privacy considerations, and potential applications will be briefly discussed.

The subsequent sections of this thesis delve into the background of audio recording and
geospatial metadata, describe the system architecture of the MLAR framework, present
implementation details, evaluate experimental results, and conclude with insights into

future developments in this field.

Chapter 2

Background and Related Work

The field of location-based audio recording has evolved significantly with the advancement
of digital sound processing and geospatial technologies. Various studies have explored
the intersection of audio data collection and location metadata, with applications in
journalism, environmental monitoring, and cultural preservation.

Historically, sound recording has been constrained to single-location capture, limit-
ing its contextual relevance. Recent developments in mobile computing and geographic
information systems (GIS) have facilitated multi-location recording, allowing for a richer
representation of environmental acoustics.

Research in spatial audio and geotagging has paved the way for MLAR. Studies on
mobile applications for sound mapping, such as the work of Salter et al. (2018) on
urban soundscapes, highlight the significance of location-aware recordings. Similarly,
open-source projects like Aporee Sound Maps and Radio Aporee provide a foundation
for integrating audio with geographic metadata.

Furthermore, advances in lossless compression formats such as FLAC have improved
the efficiency of high-fidelity sound storage. JSON, widely used for data interchange,
offers a lightweight and structured format for representing metadata, enabling seamless
integration with web-based platforms.

Despite these advancements, challenges remain in synchronizing multi-location record-

ings, ensuring data integrity, and addressing privacy concerns associated with geotagged

audio. This thesis builds upon previous work by proposing a standardized MLAR frame-

work that leverages FLAC and JSON for efficient data handling and accessibility.

Chapter 3

System Architecture

The system architecture of MLAR is designed to ensure seamless integration of multiple-
location audio recordings with geospatial metadata. This chapter outlines the core com-
ponents, data flow, and technological framework supporting the implementation of MLAR

using FLAC and JSON.

3.1 System Components
The MLAR system comprises the following key components:

e Audio Capture Module: Responsible for recording high-fidelity audio using
FLAC encoding. This module operates on multiple devices and synchronizes record-

ings from different locations.

e Metadata Management System: Utilizes JSON to store geospatial and tempo-
ral metadata. It includes attributes such as GPS coordinates, timestamp, recording

device details, and environmental parameters.

e Data Processing Unit: Aggregates and normalizes audio data, ensuring synchro-

nization between multiple recording sources.

e Storage and Retrieval Mechanism: Implements a structured database for stor-

ing FLAC files along with their corresponding JSON metadata.

e User Interface & API: Provides access to recordings via a web-based platform,

allowing users to search and interact with MLAR data efficiently.

3.2 Metadata Management System

The metadata management system leverages JSON to store not only basic geospatial
data but also environmental and device-related information, enhancing the context of
each recording. The metadata structure includes, but is not limited to:

- **Location™*: GPS coordinates (latitude and longitude) that specify the exact point
of the recording. - **Timestamp™*: ISO 8601 formatted timestamp indicating when the
recording was made. - **Environmental Parameters**: Optional data such as tempera-
ture, humidity, and weather conditions at the time of recording, which may be captured
using external sensors. - **Recording Device Details™*: Information about the device
used for capturing the audio, including model, operating system, and sensor accuracy.
- ¥*Recording Quality**: Attributes related to the quality of the recording, such as bit
depth, sample rate, and codec used (e.g., FLAC at 16-bit/44.1kHz).

Example:

{"location":{
"latitude ":59.9433,
"longitude ":10.8685},
"timestamp":"2025—-02-26T05:12:41.803Z",
"audio ": " [[BASE64-ENCODED AUDIO DATA||",
"metadata":{" filePath":" /path/to/audiofile —1740546761803.wav",

"description":" Location—based recording"}

3.3 Cross-Platform Compatibility

The MLAR system is designed to operate on both desktop and mobile devices. By
leveraging HTML5 and JavaScript, the system ensures a consistent user experience across
platforms. The implementation uses the ‘navigator.mediaDevices.getUserMedia‘® API to
capture audio, which is supported on most modern browsers, including mobile versions.

To optimize for mobile devices, we ensure that:

e The interface is responsive and works well on small screens (e.g., via CSS media

queries).

e We validate the availability of geolocation and audio recording features before start-

ing a session.

e Background recording is minimized to prevent interruptions during the capture

process.

Chapter 4

Privacy and Security Considerations

When dealing with location-based audio recordings, privacy is a critical concern. Record-
ing audio along with GPS data can potentially expose sensitive information about indi-
viduals or locations. Therefore, privacy mechanisms must be integrated into the MLAR
framework.

1. **Anonymization**: To preserve user privacy, it is essential to anonymize sensitive
data. For example, instead of storing exact GPS coordinates, we could store approximate
locations (e.g., within a 100-meter radius). 2. **Encryption™*: All recorded audio files
and metadata should be encrypted during transmission (e.g., using HTTPS) and storage
to prevent unauthorized access. 3. **Access Control™*: Implement strict access controls
to ensure that only authorized users can access sensitive audio recordings and metadata.
4. **Opt-in System™*: Users should be able to opt in or out of including location data

and should have control over what metadata is recorded.

Chapter 5

Map Visualization and Heatmap

To visualize the distribution of audio recordings, we integrate the Leaflet.js library to
plot recorded locations on an interactive map. Each point on the map corresponds to a
geotagged audio file, which users can click to access the associated metadata and download

the recording.

Record Audio with MLAR JSON and Map

Start Recording

Audio Recordings:

« Recording at 2025-02-23T05:50:00.357Z | Download Audio (FLAC) | Download Metadata (JSON)
+ Recording at 2025-02-23705:50:08.077Z | Download Audio (FLAC) | Download Metadata (JSON)
+ Recording at 2025-02-23T05:54:53.092Z | Download Audio (FLAC) | Download Metadata (JSON)
« Recording at 2025-02-26T05:12:41.803Z | Download Audio (FLAC) | Download Metadata (JSON)
 Recording at 2025-02-26T12:48:34.767Z | Download Audio (FLAC) | Download Metadata (JSON)

gy

1 g % | 3 !
+ | o) GretSbriain BTG Gronud
£ Nordberg), H 50 il < i
-t ; Lo) . ’
& . | N Flaen s s ~
oy it Radtvet : 7 =
Sogn s 7 S Gréfsen \ | A3, i /\H
o =5 Nydaten 5\ x
» Tasen i \ i 025-02-26T12:48:34.767Z
Gaustad 57 Berg H
Jacnstad, P i) i Tonsenhagen Kaiis & — - .
yid i 7 i Sm:ib =% ofthus Arvoll e M - Z
3 g L > 7 sFuruset
2z i 7. Disen - ST, Jeitvet 3
¢ F & Sandaker L= i Brobekk ; 5
il uliéval = e =" P TR il M 16 & .
Blindern 4 © Bjolsen & / s+ _izTonsen Bjérke - = 8 ' i
. g t N et
\ L ; Z . Refstad: V”J‘H g g
A\ . Sagene ;' s Vollebekk, 7 A 5
” 4 191
Marienlyst.~ : prshoy ey = 1
£ " Anegliermicien 1
Fagerborg | ey | | Lindeberg ¢ 1
2 £ [drosentioft) Sluhberu\f)\KM p
Majoysitien i 3 & et G
= Dalenenga i 5 fuer, Lindeberg:
thevscraeon ficms 4 Y s goim

Figure 5.1: Map showing the locations of multiple audio recordings.

Additionally, a heatmap can represent the density of recordings in different areas,

highlighting the spatial distribution of soundscapes.

Chapter 6

Performance Optimization

Since FLAC files can grow large, we propose an efficient storage strategy that includes:

e **Chunking®*: Breaking down large audio files into smaller segments for easier

handling and faster retrieval.

e **Metadata Compression**: Compressing JSON metadata using algorithms like

GZIP before storing in the database to reduce disk space usage.

e **Cloud Storage™*: For scalability, consider using cloud storage solutions like AWS

S3 or Google Cloud Storage, which are designed to handle large datasets efficiently.

10

Chapter 7

Introduction

Location-Based Multiple-Location Audio Recording (MLAR) is an innovative approach
that combines geospatial data with high-fidelity audio recording. With the increasing
importance of preserving auditory experiences in various environments, MLAR enables
precise documentation of soundscapes across multiple locations. The integration of FLAC
for lossless audio compression and JSON for structured metadata facilitates efficient stor-
age and retrieval of audio recordings with location-specific attributes.

This chapter introduces the motivation behind MLAR, outlines its significance in the
domains of digital archiving, journalism, and cultural heritage preservation, and provides
an overview of the core technologies employed. Additionally, the challenges related to data
management, privacy considerations, and potential applications will be briefly discussed.

The subsequent sections of this thesis delve into the background of audio recording and
geospatial metadata, describe the system architecture of the MLAR framework, present
implementation details, evaluate experimental results, and conclude with insights into

future developments in this field.

7.1 Data Flow and Integration

The MLAR framework follows a structured data pipeline: 1. **Recording Phase*™*: De-
vices equipped with microphones and GPS sensors capture audio and location data. 2.

**Encoding and Metadata Tagging™*: FLAC encoding ensures lossless audio compres-

11

sion, while JSON metadata is generated dynamically. 3. **Data Synchronization™*: A
centralized server collects, timestamps, and synchronizes recordings from different loca-
tions. 4. **Storage & Indexing™*: Audio files and metadata are stored in a database with
indexing for efficient querying. 5. **Playback & Analysis**: Users can access recordings

via the web platform, with visualization tools for geospatial analysis.

12

Chapter 8

Implementation

The implementation of MLAR is based on web technologies, integrating HTML5, JavaScript,
and backend services for efficient handling of audio and metadata.
Below is a sample implementation using HTML5 and JavaScript for recording and

managing MLAR data.

Listing 8.1: JavaScript Audio and JSON Interface

// Initialize the map using Leaflet
const map = L.map(’map’).setView ([51.505, —0.09], 13); // Default location (London)
L.tileLayer (’https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png’).addTo(map);

// Global variables for recording and managing audio
let mediaRecorder;
let audioChunks = [];

let currentLocation = { latitude: null, longitude: null };

// Button handlers for recording
$(’#startRecordingBtn ’).on(’click ’, startRecording);
$('#stopRecordingBtn ’).on(’click >, stopRecording);

// Initialize location and load previous recordings from localStorage

navigator.geolocation.getCurrentPosition (updateLocation, showLocationError);

// Function to update the current location

function updateLocation(position) {
currentLocation.latitude = position.coords.latitude;
currentLocation.longitude = position.coords.longitude;

map.setView ([currentLocation.latitude , currentLocation.longitude], 13);

L.marker ([currentLocation.latitude , currentLocation.longitude]).addTo(map).bindPopup (" Your Location").openPopup();

// Handle errors if location access is denied
function showLocationError(error) {

alert ("Location access denied. Using default location.");

// Start audio recording

13

function startRecording () {
audioChunks = [];
$("#startRecordingBtn). prop(’disabled ’, true);
$('#stopRecordingBtn ’). prop(’disabled ’, false);

if (navigator.mediaDevices \&\& navigator.mediaDevices.getUserMedia) {

navigator.mediaDevices .getUserMedia({ audio: true })

.then (stream => {

mediaRecorder = new MediaRecorder (stream);
mediaRecorder.ondataavailable = event => audioChunks.push(event.data);
mediaRecorder.onstop = saveAudioRecording;

mediaRecorder.start ();

)

.catch(err => alert ("Error accessing microphone: " + err));

// Stop audio recording

function stopRecording () {
$(’#startRecordingBtn ’).prop(’disabled ’, false);
$('#stopRecordingBtn ’). prop(’disabled ’, true);

mediaRecorder.stop ();

// Save audio and store in localStorage with MLAR JSON format
function saveAudioRecording () {

const audioBlob = new Blob(audioChunks, { type: ’audio/wav’ });

const reader = new FileReader ();
reader.onloadend = function () {
const base64Audio = reader.result.split(’,’)[1]; // Get base64

// Create MLAR JSON object with metadata
const mlarData = {
location: { latitude: currentLocation.latitude , longitude:
timestamp: new Date().toISOString(),
audio: base64Audio,
metadata: {
filePath: ‘/path/to/audiofile—${Date.now()}.wav’,

description: "Location—based recording"
}s

// Save MLAR data to localStorage
let recordings = JSON.parse(localStorage.getltem (’recordings ’))
recordings . push(mlarData);

localStorage .setltem (’recordings ’, JSON.stringify (recordings));

// Update the map and audio list with new data
updateAudioList ();
addMarkerToMap (mlarData);

+s

reader .readAsDataURL(audioBlob);

// Add marker to the map for the recorded audio
function addMarkerToMap(data) {
L.marker ([data.location.latitude , data.location.longitude])
.addTo (map)
.bindPopup (‘Audio recorded at: ${data.timestamp}*‘)

.openPopup ();

14

string of the

currentLocation

audio

.longitude

b

// Update the list of audio recordings displayed
function updateAudioList () {
$('#audioList ’).empty ();

const recordings = JSON.parse(localStorage.getltem (’recordings ’)) || [];

recordings.forEach(recording => {

const listltem = $(°<1li>’).text(‘Recording at ${recording.timestamp} ‘);

// Add download links
const downloadAudioLink = $(’<a>")
.text (’Download Audio (FLAC)’)
.attr (’href’, generateAudioDownloadLink(recording))

.attr ("download’, ‘audio—${recording.timestamp}.flac ‘);

const downloadJsonLink = $(’<a>’)
.text ("Download Metadata (JSON))

.attr (href’, generateJsonDownloadLink(recording))
.attr (’download’, ‘metadata—${recording.timestamp}.json ¢);
listItem .append(’ | ’).append(downloadAudioLink).append(’ | ’).append(downloadJsonLink);

$(’#audioList ’).append(listItem);
1)

// Function to generate a download link for the audio (as FLAQC)

function generateAudioDownloadLink(recording) {

// Convert base64 to blob (WAV) and create download link (simulating FLAC download for simplicity)

const audioBlob = base64ToBlob(recording.audio, ’'audio/wav’);
const audioUrl = URL.createObjectURL (audioBlob);

return audioUrl;

// Function to generate download link for JSON metadata

function generateJsonDownloadLink(recording) {
const jsonBlob = new Blob ([JSON.stringify (recording)], { type: ’application/json’ });
const jsonUrl = URL.createObjectURL (jsonBlob);

return jsonUrl;

// Helper function to convert base64 to Blob
function base64ToBlob(base64, type) {
const byteCharacters = atob(base64);

const byteArrays = [];

for (let offset = 0; offset < byteCharacters.length; offset 4= 512) {
const slice = byteCharacters.slice (offset , offset + 512);
const byteNumbers = new Array(slice.length);
for (let i = 0; i < slice.length; i4++4) {
byteNumbers[i] = slice.charCodeAt(i);
}
const byteArray = new Uint8Array (byteNumbers);

byteArrays.push(byteArray);

return new Blob(byteArrays, { type });

// Initialize the audio list on page load

15

$(document).ready (function () {
updateAudioList ()3

1)

Listing 8.2: HTML5 Audio Recording Interface

< !DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name='"viewport" content="width=device—width,_initial —scale=1.0">
<title>Audio Recording with MLAR JSON</title>
<link rel="stylesheet" href="https://unpkg.com/leaflet /dist/leaflet.css" />
<style>
body {
font—family: Arial, sans—serif;

margin: 20px;

}
#amap {
height: 400px;
width: 100%;
}

.recording —btn {
padding: 10px 20px;
background—color: #4CAF50;
color: whitej;
border: none;

cursor: pointer;

.recording —btn:disabled {
background—color: #cccccc;
}
</style>
</head>
<body>
<hl1>Record Audio with MLAR JSON and Map</hl>
<div>
<button class="recording—btn" id="startRecordingBtn">Start Recording</button>

<button class="

recording —btn" id="stopRecordingBtn" disabled>Stop Recording</button>
</div>

<h83>Audio Recordings:</h3>

<ul id="audioList">

<div id="map"></div>

<script src="https://code.jquery.com/jquery —3.6.0.min. js"></script>
<script src="https://unpkg.com/leaflet/dist/leaflet.js"></script>
<script src="script.js"></script>

</body>

</html>

16

Chapter 9

Conclusion and Future Work

This implementation allows a user to start and stop recording location-based audio di-
rectly in a web browser using HTML5 and JavaScript. Future developments will focus
on further enhancing the user interface, improving the synchronization of multi-location

recordings, and addressing additional privacy concerns.

17

